Quantum Monte Carlo

Introduction
Reactions between molecules are important for virtually all parts of our lives. The structure and reactivity of molecules can be predicted by Quantum Chemistry, but the solution of the vastly complex equations of Quantum Theory often require huge amounts of computing power. This project seeks to raise the necessary computing time in order to further develop the very promising Quantum Monte Carlo (QMC) method for general use in Quantum Chemistry.

Contents

Videos


Science

[The Science section might (or might not) be divided into two parts: {1} general discussion of the field, and then {2} a discussion of the project's specific endeavor. For instance, in LHC@home, we might have {1} "Science of the Large Hardon Collider" and then {2} "Science of LHC@home"
The above is desirable, because in most cases, the field of research is really fascinating, and presenting this in broad terms-- outlining the big questions-- can make it easier to understand the particulars of the project and why it is important. ]


Results

  1. Korth, M., Lüchow, A., and Grimme, S. Toward the Exact Solution of the Electronic Schrödinger Equation for Noncovalent Molecular Interactions: Worldwide Distributed Quantum Monte Carlo Calculations, J. Phys. Chem. A, 112 (10), 2104 -2109.

Links of Interest

[Why recreate the wheel; there are lots of great sources out there.; a good list of sources can be really useful to the reader.]


Quantum Monte Carlo in the Classroom

[For each project, please add a "[Projectname] in the Classroom" section-- with a link to Volunteer Computing In the Classroom and an article named "[Projectname] in the Classroom". (Then please add "[Projectname] in the Classroom" to the list on the main Education page.)]